FORMATION OF THE N⁵-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE HOLOENZYME FROM APOENZYME AND ADENOSYL-B_{1,2}*

Fermin Rosales, Sarah J. Ritari and Warwick Sakami

Department of Biochemistry
Case Western Reserve University
School of Medicine
Cleveland, Ohio 44106

Received June 1, 1970

Summary: Two components of E. coli extract separable by DEAE-cellulose chromatography have been found to function together to convert the apoenzyme form of the $\rm N^5$ -methyltetrahydrofolate-homocysteine transmethylase and adenosyl- $\rm B_{12}$ to holoenzyme in the presence of DPNH and homocysteine. They also form holoenzyme from hydroxo- $\rm B_{12}$ and cyano- $\rm B_{12}$ and constitute a DPNH-dependent reducing system that promotes the formation of methionine by holoenzyme.

When <u>E. coli</u> is grown in the absence of cobamides the apoenzyme form of N^5 -methyltetrahydrofolate-homocysteine transmethylase accumulates (1). The formation of holoenzyme with this protein and various cobamides <u>in vitro</u> was investigated by Takeyama, Hatch and Buchanan (2) who reported that the conditions for the utilization of cyano- B_{12} and adenosyl- B_{12} were different. Although a crude extract of <u>E. coli</u> that contained the apoenzyme was found to use the two cobamides for holoenzyme formation, a 35-45% ammonium sulfate fraction that utilized cyano- B_{12} had little activity on the coenzyme. In subsequent studies, Brot and Weissbach (3) demonstrated that adenosyl- B_{12} was converted to holoenzyme when protein of the 60-90% ammonium sulfate fraction of <u>E. coli</u> extract and DPNH were included in the incubation mixtures. They observed that this protein fraction and DPNH also permitted the utilization of hydroxy- B_{12} , but not cyano- B_{12} , and provided the reducing system required for the formation of methionine. All of these properties were attributed to an enzyme that they called "holoenzyme synthetase".

^{*}This work was supported by Grant 5R0lAM08098 from the U.S. Public Health Service

¹Abbreviations: cyano-B₁₂, cyanocobalamin; hydroxy-B₁₂, hydroxocobalamin; methyl-B₁₂, methylcobalamin; propyl-B₁₂, propylcobalamin; adenosyl-B₁₂, 5'-deoxyadenosylcobalamin; CH_3 -H₄PteGlu, N⁵-methyltetrahydropteroylglutamic acid; AMe, S-adenosyl-L-methionine iodide; DTE, dithioerythritol.

The present communication reports the isolation of two components of \underline{E} . coliextract which together form holoenzyme from apoenzyme and adenosyl- B_{12} in the presence of DPNH and homocysteine and describes some of their properties. The results of our studies on the mechanism of action of these substances will be presented in a later publication.

Materials and Methods

Apoenzyme, obtained from <u>E. coli</u> W grown to late log phase by the procedure of Vogel and Bonner (4) was partially purified to remove DPNH-dependent reductase activity. All of the solutions used in the preparation of this protein fraction contained 0.002 M DL-homocysteine in addition to the constituents specified (2).

The E. coli W cells were broken by sonicating the organisms in 0.2 M K-PO₄ buffer, pH 7.45 (4 ml per g, wet weight) at 20 KC for 4 min at 00. After centrifugation of the preparation and treatment of the supernatant solution with bovine pancreatic deoxyribonuclease I and ribonuclease (2), apoenzyme was precipitated by the addition of a dry K-PO₄ buffer salt mixture pH 7.45* (55 g/liter) followed by a similar mixture of $(NH_4)H_2PO_4$ and $(NH_4)_2HPO_4**$ (191 g/liter). The precipitate was removed by centrifugation and dissolved in a minimum amount of 0.2 M K-PO₄ buffer, pH 7.45. Ten ml of this solution were chromatographed anaerobically (5) on a column of Sephadex G-200 (5 X 90 cm) equilibrated with the buffer. Fractions containing apoenzyme were identified by the presence of a precipitate of DL-homocystine after standing in air for 3 days at 0°. When protected with 0.002 M DLhomocysteine, the apoenzyme has been kept at $0-4^{\circ}$ for several days and maintained in the frozen state at -150 for several months with relatively little loss in activity. The yield of apoenzyme was 70% of the material present in the dialyzed sonicated extract, and the increase in specific activity was 12-fold. Center fractions of the apoenzyme peak, which contained little DPNH-dependent reductase activity, were used in the experiments described in this communication.

The holoenzyme-forming enzyme system was isolated from the centrifugate

^{*185} g K₂HPO₄· 3H₂O and 25.8 g KH₂PO₄.

^{**132} g $(NH_4)_2HPO_4$ and 13.8 g $(NH_4)H_2PO_4$.

obtained in the preparation of apoenzyme. Ammonium sulfate, 81 g/liter, was added to the solution, and the precipitate was removed by centrifugation. The active protein fraction was then salted out by further addition of ammonium sulfate, 181 g/liter. The precipitate was removed by centrifugation, dissolved in a minimum amount of 0.05 M K-PO₄ buffer pH 7.45, and dialyzed against the same buffer.

The two components of "holoenzyme synthetase" were separated by chromatography on DEAE cellulose.* One of them, Cp 1, was prepared by this procedure:

the other component, Cp 2, was prepared more conveniently from a heated extract (see below). One and seven tenths gram protein in 68 ml volume were introduced into a column of DEAE-cellulose* (4 X 40 cm) equilibrated with 0.05 M buffer, pH 7.45, and eluted with a linear gradient of K-PO₄ buffer, 0.05 M to 0.30 M, 1 liter total volume. Cp l activity associated with yellow material was eluted between 430 and 500 ml. The active portion of the eluate was concentrated with Sephadex G-25, and the protein was fractionated on a column of Sephadex G-100 (5 X 95 cm) with 0.1 M K-PO₄ buffer, pH 7.45. When 175 mg protein in 9.2 ml were chromatographed, Cp l was eluted between 1070 and 1170 ml. Active fractions were combined and concentrated with Sephadex G-25.

Cp 2, which is heat-stable, was prepared by bringing a suspension of the cells in 0.2 M K-PO₄ buffer (2 ml/g cells, wet weight) rapidly to 88° in a Pyrex double boiler with vigorous agitation. Heating at 88°-94° was continued for 10 min, then terminated by cooling the suspension immediately in ice-water. After centrifugation, the extract was treated with deoxyribonuclease I and ribonuclease (2), concentrated with a Diaflow PM-10 filter and dialyzed against 0.05 M K-PO₄ buffer, pH 7.45. One hundred and twenty-eight mg protein (corresponding to 19 g E. coli, wet weight) were chromatographed on a column of DEAE cellulose* (1.7 X 40 cm) equilibrated with 0.05 M K-PO₄ buffer, pH 7.45, with a linear gradient of the buffer 0.05 M-0.66 M, 600 ml total volume. Cp 2, eluted between 530 and 610 ml,

^{*}Whatman DE-32.

^{**}Much more Cp 2 can be placed on the column as heated extract.

was concentrated with Sephadex G-25, and fractionated on a column of Sephadex G-200 (1.7 \times 42 cm) equilibrated with 0.2 M K-PO₄ buffer pH 7.43. Activity was eluted between 70 and 105 ml.

Gel filtration experiments indicated that Cp 1 and Cp 2 have molecular weights on the order of 70,000.

Results and Discussion

As shown in Table 1, both Cp 1 and Cp 2 are required for holoenzyme formation with adenosyl- B_{12} . In this experiment apoenzyme was incubated with adenosyl- B_{12} , DPNH, DL-homocysteine, and Cp 1 and/or Cp 2. The amount of holoenzyme that was formed was determined by measuring the ability of the incubation mixture to form methionine when supplemented with propyl- B_{12} to inhibit further holoenzyme formation (3) together with all of the cofactors and substrates that are required for the action of the holoenzyme. When both Cp 1 and Cp 2 were present during the

Table 1.	Requirement for Cpl and Cp2 in the formation of
	holoenzyme from apoenzyme and adenosyl-B ₁₂ .

Co	omponent of "holoopresent in	Methionine formed*	
	First incubation	Second incubation	(nmoles)
1.	Cp l	Cp1+Cp2	2
2.	Cp 2	Cp 1 + Cp 2	7
3.	Cp1+Cp2	Cp1+Cp2	62**

^{*}Corrected for methionine formation in the absence of both Cp l and Cp 2 from the first incubation.

^{**}The formation of holoenzyme in this preincubation was essentially complete. In a control lacking propyl-B₁₂, 72 nmoles methionine were formed.

The first incubation mixture contained: apoenzyme, 0.06 mg protein; DL-homocysteine, 10 μ moles; DPNH, 5 μ moles; adenosyl-B₁₂, 1 nmole; K-PO₄ buffer, pH 7.45, 100 μ moles; and, where indicated, Cp 1, 0.04 mg protein; and Cp 2, 0.14 mg protein. The total volume was 0.55 ml. Incubation was under N₂ for 30 min at 37°. In the second incubation the mixture contained the substances listed above, and propyl-B₁₂, 30 nmoles; CH₃-H₄PteGlu, 6.2 μ moles; AMe, 50 nmoles; mercaptoethanol, 10 μ moles; additional K-PO₄ buffer, 50 μ moles; and both Cp 1 and Cp 2. The total volume was 1 ml. Incubation was under N₂ for 2 h at 37°. Enzyme activity was terminated by the addition of 1 ml of 10% TCA, and methionine was determined microbiologically (6).

first incubation, holoenzyme was formed, as indicated by the production of methionine in the second. Little holoenzyme was formed when either Cp 1 or Cp 2 were omitted.

The results of the study shown in Table 2 are consistent with the hypothesis (3) that "holoenzyme synthetase" per se and DPNH provide a natural reducing system of the type that is required for methionine formation by holoenzyme. In the incubations described in the table apoenzyme and methyl-B₁₂ combined spontaneously (7,1,8) to form holoenzyme. The formation of methionine by the holoenzyme was greatly increased by the combination of Cp l and Cp 2. "Holoenzyme synthetase" is not the only DPNH-dependent reductase of E. coli that permits holoenzyme to form methionine. The ammonium phosphate fraction that contains apoenzyme formed methionine when incubated with methyl-B₁₂ and the substrates and cofactors listed in Table 2, although it contained no "holoenzyme synthetase". Chromatography of the fraction on Sephadex G-200 demonstrated that it contained at least two reductases of this type.

According to Brot and Weissbach (3), "holoenzyme synthetase" and DPNH form holoenzyme from apoenzyme and hydroxy- B_{12} but not cyano- B_{12} . The results shown in Table 2 demonstrate that both of these cobamides may be converted to

Table 2.	Requirement for Cp 1 and Cp 2 in the formation of methionine
	by apoenzyme and methyl- B_{12} , hydroxy- B_{12} , and cyano- B_{12} .

Component of "holoenzyme synthetase" present		Methionine formed (nmoles)		
		Methyl-B ₁₂	Hydroxy-B ₁₂	Cyano-B ₁₂
1.	Cp l	38	23	15
2.	Cp 2	8	10	0
3.	Cp1+Cp2	150	. 88	95

The incubation mixture contained: apoenzyme (see below); Cp 1, 0.03 mg protein; and/or Cp 2, 0.02 mg protein; methyl-B₁₂, hydroxy-B₁₂, or cyano-B₁₂ l nmole; DL-homocysteine, 10 μ moles; DPNH, 5 μ moles; CH₃-H₄PteGlu, 6.2 μ moles; AMe, 50 nmoles; mercaptoethanol, 10 μ moles; and K-PO₄ buffer, pH 7.45, 170 μ moles. Two different apoenzyme preparations were employed, one (0.04 mg protein) in the study of methyl-B₁₂ and hydroxy-B₁₂, the other (0.1 mg protein) when cyano-B₁₂ was present. The total volume was 1 ml. Incubation was under N₂ for 2.5 h at 37°.

holoenzyme by the enzyme system that utilizes adenosyl-B₁₂.

Several proteins that have been briefly reported to play a role in methionine synthesis in E. coli may be identical with Cp l or Cp 2. Galivan and Huennekens (9) have indicated that they have separated the "methionine synthetase" of E.coli K12 into two proteins designated M and S. The two components formed methionine when incubated with methyl- B_{12} (or hydroxy- B_{12}), CH_3 - H_4 PteGlu, homocysteine, AMe and DTE under argon. They also have isolated a DPNH-dependent reductase capable of participating in methionine synthesis that they consider to be the "holoenzyme synthetase" of Brot and Weissbach (3). It is not clear whether S is required when DTE is replaced by the reductase or whether the reductase can form holoenzyme from apoenzyme and adenosyl-B₁₂ in the presence of DPNH. Of interest also is the claim of Rüdiger and Jaenicke (10) that extracts of E. coli B contain a protein capable of demethylating the methyl-B₁₂ form of methionine synthetase (DMfactor). The substance S of Galivan and Huennekens (9) may be a monomeric form of Cp 2 and the DM-factor. All three substances are heat stable. Information concerning the reductase is insufficient to suggest whether it is Cp l or one of the DPNH-dependent reductases of E. coli that promote methionine synthesis in the absence of Cp 2.

REFERENCES

- Weissbach, H., Redfield, B. G., Dickerman, H., and Brot, N., J. Biol. Chem. 240, 856 (1965).
- Takeyama, S., Hatch, F. T., and Buchanan, J. M., J. Biol. Chem. <u>236</u>, 1102 (1961).
- 3. Brot, N., and Weissbach, H., J. Biol. Chem. 241, 2024 (1966).
- Vogel, H. J., and Bonner, D. M., J. Biol. Chem. 218, 97 (1956).
- 5. Sakami, W., Anal. Biochem. 3, 358 (1962).
- Steel, B. F., Sauberlich, H. E., Reynolds, M. S., and Baumann, C. A., J. Biol. Chem. <u>177</u>, 533 (1949).
- Guest, J. R., Friedman, S., Woods, D. D., and Smith, E. L., Nature 195, 340 (1962).
- 8. Taylor, R. T., Arch. Biochem. Biophys. 137, 529 (1970).
- Galivan, J., and Huennekens, F. M., Biochem. Biophys. Res. Commun. 38, 46 (1970).
- 10. Rüdiger, H., and Jaenicke, L., Naturwissenschaften 57, 132 (1970).